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I: 

�9 In this paper we obtain a probabilistic representation of the solutions of a 
linearized Boltzmann equation. By making use of dual Markov processes we 
extend Pinsky's results to the case where there is a gradient force field present. 
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1. INTRODUCTION AND PRELIMINARIES 

In this paper we obtain a probabilistic representation of the solution of a 
linearized Boltzmann equation of the type 

a F(x) 0 
~ ( x ,  v,  t) + v .  g-;x o ( x ,  v,  t) + - - .  - -  o ( x ,  v ,  t) 
Ot m Ov 

= ~(v)fH(v' ,v)[ k(v,v)O(x,v', 0 - O(x,v,t)]dv' 
(1.1) 

limp(x,v,t)=oo(x,v) as q,O 

where (x,v)  ~ R 6, t > O, dots indicate scalar products, and O/ax, a/Ov are 
the usual gradients. The rest of the terms will be explained below. In this 
way we extend Pinsky's result (1) to the case where a force field F(x) is 
present. 

Our method of solution will rely on the notion of dual Markov process 
(a generalization of the notion of time-reversed process) and the proof 
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follows from a simple renewal equation type argument. This also gives an 
alternative derivation of the results in Ref. 1 to the case F(x)r O. This is 
developed in Section 2. After obtaining the probabilistic representation of 
the solution to (1.1) we examine some of its elementary properties, and we 
leave for papers II and III of this series a variety of limits theorems, 
perturbation expansions, boundary-value problems, and applications. 

In what follows we shall present all necessary concepts as  simply as 
possible, giving only the essentials needed for the solution of (1.1) and not 
getting bogged down in--very hard--technical issues. Stating all pre- 
liminaries will take longer than obtaining the solution to (1.1), and we hope 
the reader finds it worthwhile. 

We shall say that two processes (Zt)t> 0 and (2~t)t> 0 on the same state 
space (S, 5~), X denoting the Borel sets of S, and semigroups Pt and /;~, 
respectively, are in duality with respect to a measure m(dz) on S '  if 

f PJ(z)g(z)m(dz) = f f(z)P,g(z)m(dz) (1.2) 

for every pair of functions f, g [usually in some Banach space of functions 
contained in Ll(m) A L2(m)]. For the general definition the very interested 
reader can check with Ref. 2, and for a connection with time reversal in 
Markov processes and applications, Refs. 3 and 4. 

For our needs two very simple cases of processes in duality will suffice. 
These are presented as separate processes which will be put together at the 
end, and at the same time we shall establish the notation for Section 2. 

Example 1. 
solutions of the systems 

Let q,, and ~, be the flows in ~6 associated to the 

,ix dr_ F(x) 
(1.3a) dt - V' dt m 

d~, _ I7, a l  7 _ F()~) (1.3b) 
dt dt m 

where F(x) = - V  U(x) is such that the solutions through every (x, v) exist 
globally and are unique. For any continuous function f ( x , v )  on R 6 we 
define 

Tof(x, v) = f(ep,(x, v)), T,f(x, v) = f(q,,(x,  v)) (1.4) 

where q,t(x,v) and ~t(x,v) are the solutions to (1.3a) and (1.3b) which at 
t = 0 pass through (x, v). Also ~t(x, v) = ~_t(x ,  v) and since we assume the 
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systems to be Hamiltonian, fit is a measure-preserving flow on ~6. There- 
fore 

f f(x,v)T,g(x,v)axav = f f(x,v)g(ept(x,v))dxdv 

= ff(,_,(x,,~))g(x,v)axav 
= f 
= f 

This asserts that the processes Z t =  (X t, Vt) and 2~ t = (Xt, 17,)= (X_, ,  
V_t) are dual. Observe that though Z t is the time-reversed process of Z,, 
the equations of motion in Hamiltonian form are not invariant under time 
reversal. 

It is also very easy to check that for continuously differentiable f (x ,  v) 
on ~6 

dT, f ( x , v )  =GoT, f ( x , v )  , d L _ GoT~f(x,v ) 
dt dt 

where 

F(x) a 
G 0  = v .  + ~ �9 - -  ( 1 . 5 )  

m 3v 

Example  2. Let V t now denote a pure jump Markov process (the 
generalization of birth and death process, see Ref. 2) on N3 whose infinites- 
imal generator is given by 

G 1 f (v )  = )~(v)f l I(v ,v ' )[  f (v ' )  - f (v )  ] dr' (1.6) 

where X(v)-1 is the average time the process stays at v before jumping away 
and II(v, v ' )dv '  is the probability that a jump from v ends up in dv' around 
t . )  t , 

Naturally, fI-l(v, v')dv' = 1 for all v, and we shall assume that 

f I I (v ,v ' )dv= 1 for all v' (1.7) 

Now, put l~(v, v') = II(v', v) and )~(v) = X(v); define 

Gt f (v )  = X(v) f ~(v ,  v')[ f (v ' )  - f (v ) ]  dv' (1.8) 
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It is easy to check (leaving aside domain questions) that if S t and ;~t 
are the semigroups with generators G 1 and G1, i.e., if 

dt dt 
then 

f f(v)g,g(v)dv= f Stf(v)g(v)dv 

Now, if we put these two sets of generators together and define 

af (x ,v )  = a0 f (x ,v )+  G, f ( x , v )  (1.9a) 

Of(x, v) = - Gof(X, v) + ~ , f ( x ,  v) (1.9b) 

Of course, the left-hand sides are to be applied to differentiable 
functions such that the integrals in (1.6) and (1.8) are finite. There is a 
theory developed by Bass (5'6) of how to add jumps to a given process 
through modifications of their infinitesimalgenerators as in (1.9). 

From now on Z t = (X t, Vt) and 2~ t = (X t, Vt) are processes on R 6 whose 
infinitesimal generators are  given by (1.ga) and (1.9b), respectively, and we 
shall denote by Pt and Pt their respective semigroups; then from the duality 
of G and G we can readily obtain that of Pt and fit. The most simple- 

A 

minded way is to use the exponential formulas for Pt and Pt. We remark 
now that even though Z, and Z t are dual, they are not the time reversal of 
each other any more. 

Before giving the very elementary properties of Z t (which are analo- 
gous for Zt) let us mention that px,,~ and px,v will denote the measures on 
the space of trajectories (right continuous with left limits) on R 6 constructed 
from Pt and Pr By E x'v and/~x,v we shall denote the expected (average) 
values with respect to px,v and fix,v, respectively. 

The behavior of Z t will be as follows: starting from (x, v), Zt will equal 
fit(x, v)=-(x(t), v(t)) up to a random time T l with distribution 

PX,V(Tl > t) = exp[-  fotX(v(s))ds ] (1.10) 

at which the velocity has a discontinuity (receives a kick from the environ- 
ment) according to 

PX'v(V(T1)cdv'lV(T,- ) = v) = II(v,v')dv' (1.11) 

where 

V(TT) = lim Vs= limv(s) = v(T~) 
S ~ ' T ~  S ' ~  T " - 

From T l on, and up to another T 2 independent of T l and distributed 
according to (1.10), it will evolve according to the flow ~'t with initial 
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condition (X(TO, V(T1)), and at T 2 the velocity has another discontinuity 
distributed according to (1.11), etc., etc. 

Also, there are finitely many jumps in every time interval. From (1.10) 
and (1.11) it follows that for any positive measurable function g(x, v, v') 

EX'V[ g (X(T , ) ,  V(TT), V(T,)); T, < t] 

= fot)~(v(s))exp[ - foo'h(v(u))du ]ds f I I ( v ( s ) , v ' )g (x ( s ) , v ( s )v ' )dr '  

(1.12) 

We still need to define one more object. Let k(v, v') be a continuous 
function on R 6 such that k(v, v) = 1 for all v. Define 

~ , =  IIk(Vs_,V,), m,= I - I k (V , ,V ,_ )  (1.13) 
s < t  s < t  

We denote by Ot, Ot the time-shift operators, i.e., Z t �9 O s = Zt+ s and 
Z,t" ~), = Zt+s; then 

mt+ s = mtm s �9 Or, mr+ ~ = r~ t �9 r~,. 0 t (1.14) 

i.e., m t and r~ t are multiplicative functionals of Z t and ~,. If we require 
that, as a function of v, the following integrals 

f ~(v ,v ' )k (v ,~ ' )g(v ' )dv ' ,  I I (v ,v ' )k (v ' , v )g(v ' )dv '  

are bounded, then EX'~lmt[, EX'~[mt[ will be finite for all t. What  is more 
important for us here is that m t and n5 t are in duality, i.e., 

f f ( x ,  y )EX'V[m,g(S , ,g , ) ]dxdv= f Ex 'v[~,g( . f ' , , lP, )] f (x ,v)dxdv 

(1.15) 

for f and g in the appropriate class. This result can be found in Ref. 7. 

2. SOLUTION OF EQ. (1.1) 

With the notations introduced in Section 1 we can state our extension 
of Pinsky's result as follows: 

Theorem 2.1. Let X(v), II(v, v') be such that the process (X, V) with 
generator G given by (1.9b) is well defined and in duality with (X, V) with 
respect to the multiplicative functionals m, n3 [i.e., (1.15) holds]. Let po(X, v) 
be a bounded, continuously differentiable function in the domain of G. 
Then 

p(x, v, t) = V,)] (2.1) 
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is well defined, positive if k and O are positive, and satisfies 

a--7 + a0o = x(~) n ( v , v ' ) [ k ( v , v ' ) o ( ~ , v ' , O  - (x,~,0] dv' 

l imo(x ,v , t )  = Oo(X,V) as t$0 
(2.2) 

P r o o f .  We shall write a renewal equation for O(x, v, t) and by differ- 
entiation we obtain (2.2). This is more related to the methods in Ref. 8 than 
to Ref. 1. 

The limit behavior at t = 0 follows from the continuity of k and of P0 
and the right continuity of (X t, Vt). ~ 

Let now 7 ~ = inf{t > 0:17 t 4 = V t_ ) be the, time of the first discontinu- 
ity of I7 t (the first kick from the environment) and let us write 

o(x , v ,O= E x'v {.~,o0(~?,, r r > t) + ~x.~ {,~,Oo(s ~,); ~ -< t} 
and let us compute each term on the right-hand side separately. For  the 
first term we can write 

- " ( ; o ' - )  ff, x'~ {~t~o(Xt, Vt) ; t  < 7 ~ } = po(eOt(x,v))exp - X(v(s) )ds  

This is true because before the first jump of !,~t, nS, = l, and Oo()~t, 17"t) 
= Oo(~,(x,v)) and because of (1.10). 

The second term yields 

gx,v (.~,00(;,, r f-< t} 

= ffx,v {mf(rht_fOo(P~t_i . ,17, t_f . ) ) .Of;~ <<. t} 

= ~x,o[ k ( r  ), r  ~ ( f ) , t -  f ) ) ;  1" < t] 

= fo t k (6 ( s ) ) exp[ -  foSk(6(u))dul  ds 

x fn (~ ( s ) ,  v')~(~(s)v')0(~(s), v', t - .) a~' 

where at the first step we used the multiplicative property at time 7 ~, at the 
second the Markov property of (X  t, Vt), at the third the definition (2.1), and 
at the last step we made use of (1.12). 

Adding up these two results we obtain an integral equation for 
O(x, v, t) (of renewal type in the Markov processes jargon). Computing the 
derivat ive at t = 0 is easy and since for fixed g (x , v ) ,  Q~g(x ,v)  
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= ff~x,v(rhtg(ft, I7)} defines a homogeneous semigroup, it follows that, 
since (2.1) satisfies (2.3) at t = 0, it does so at any t. 

In this setup, computing the time derivative of Qtg(x, v) is tantamount 
to computing an infinitesimal generator of "subordinated processes," which 
is a rather standard computation now using "stochastic calculus" as in 
Ref. 1. 

Let us now comment on the most obvious properties of the representa- 
tion (2.1). 

First, note that if k is not identically 1, the normalization property 
fpo(X,v)dxdv = 1 is lost and we get instead, using (1.15), 

f p(x,v,t)dx f   Oo(X,v)dx d r=  f Oo(X,v)Q,l(x,v)dx 

= f oo(x, vle x,v (m,) axdv 
When k(v, ff) is bounded, a computational analogous to the one in 

1.3.2 of Ref. 8 would yield the exponential bound ]fp(x,v,t)dxdv[ 
< exp tK for some appropriate K. 

Also, the representation obtained would extend to the case where 
?~ = X(x, v) and II = II(x, v, v') are spatially inhomogeneous with just nota- 
tional changes. 

As we mentioned in the Introduction, this is to be continued with a 
study of a variety of limit theorems obtained from the representation of the 
solutions and some applications to boundary-value problems. 
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